nifreeze.model.dmri module¶
- class nifreeze.model.dmri.AverageDWIModel(self, **kwargs)[source]¶
Bases:
BaseDWIModel
A trivial model that returns an average DWI volume.
Implement object initialization.
- Parameters:
th_low (
numbers.Number
) – A lower bound for the b-value corresponding to the diffusion weighted images that will be averaged.th_high (
numbers.Number
) – An upper bound for the b-value corresponding to the diffusion weighted images that will be averaged.bias (
bool
) – Whether the overall distribution of each diffusion weighted image will be standardized and centered around thesrc.nifreeze.model.base.DEFAULT_CLIP_PERCENTILE
percentile.stat (
str
) – Whether the summary statistic to apply is"mean"
or"median"
.
- class nifreeze.model.dmri.BaseDWIModel(self, gtab, S0=None, b_max=None, **kwargs)[source]¶
Bases:
BaseModel
Interface and default methods for DWI models.
Initialization.
- Parameters:
gtab (
numpy.ndarray
) – An \(N imes 4\) table, where rows (N) are diffusion gradients and columns are b-vector components and corresponding b-value, respectively.S0 (
numpy.ndarray
) – \(S_{0}\) signal.b_max (
int
) – Maximum value to cap b-values.
- nifreeze.model.dmri.DEFAULT_CLIP_PERCENTILE = 75¶
Upper percentile threshold for intensity clipping.
- nifreeze.model.dmri.DEFAULT_HIGHB_THRESHOLD = 10000¶
A b-value cap for DWI data.
- nifreeze.model.dmri.DEFAULT_LOWB_THRESHOLD = 50¶
The lower bound for the b-value so that the orientation is considered a DW volume.
- nifreeze.model.dmri.DEFAULT_MAX_BVAL = 8000¶
Maximum b-value cap.
- nifreeze.model.dmri.DEFAULT_MAX_BVALUE = 1000¶
Maximum allowed value for the b-value.
- nifreeze.model.dmri.DEFAULT_MAX_S0 = 1.0¶
Maximum value when considering the \(S_{0}\) DWI signal.
- nifreeze.model.dmri.DEFAULT_MIN_S0 = 1e-05¶
Minimum value when considering the \(S_{0}\) DWI signal.
- nifreeze.model.dmri.DEFAULT_MULTISHELL_BIN_COUNT_THR = 7¶
Default bin count to consider a multishell scheme.
- nifreeze.model.dmri.DEFAULT_NUM_BINS = 15¶
Number of bins to classify b-values.
- class nifreeze.model.dmri.DKIModel(self, gtab, S0=None, b_max=None, **kwargs)[source]¶
Bases:
BaseDWIModel
A wrapper of
dipy.reconst.dki.DiffusionKurtosisModel
.Initialization.
- Parameters:
gtab (
numpy.ndarray
) – An \(N imes 4\) table, where rows (N) are diffusion gradients and columns are b-vector components and corresponding b-value, respectively.S0 (
numpy.ndarray
) – \(S_{0}\) signal.b_max (
int
) – Maximum value to cap b-values.
- class nifreeze.model.dmri.DTIModel(self, gtab, S0=None, b_max=None, **kwargs)[source]¶
Bases:
BaseDWIModel
A wrapper of
dipy.reconst.dti.TensorModel
.Initialization.
- Parameters:
gtab (
numpy.ndarray
) – An \(N imes 4\) table, where rows (N) are diffusion gradients and columns are b-vector components and corresponding b-value, respectively.S0 (
numpy.ndarray
) – \(S_{0}\) signal.b_max (
int
) – Maximum value to cap b-values.
- class nifreeze.model.dmri.GPModel(self, gtab, S0=None, b_max=None, **kwargs)[source]¶
Bases:
BaseDWIModel
A wrapper of
GaussianProcessModel
.Initialization.
- Parameters:
gtab (
numpy.ndarray
) – An \(N imes 4\) table, where rows (N) are diffusion gradients and columns are b-vector components and corresponding b-value, respectively.S0 (
numpy.ndarray
) – \(S_{0}\) signal.b_max (
int
) – Maximum value to cap b-values.
- nifreeze.model.dmri.find_shelling_scheme(bvals, num_bins=15, multishell_nonempty_bin_count_thr=7, bval_cap=8000)[source]¶
Find the shelling scheme on the given b-values.
Computes the histogram of the b-values according to
num_bins
and depending on the nonempty bin count, classify the shelling scheme as single-shell if they are 2 (low-b and a shell); multi-shell if they are below themultishell_nonempty_bin_count_thr
value; and DSI otherwise.- Parameters:
- Returns: