nifreeze.model package¶
Data models.
- class nifreeze.model.AverageDWIModel(self, dataset: nifreeze.data.dmri.base.DWI, stat: str = 'median', atol_low: float = 100.0, atol_high: float = 100.0, detrend: bool = False, **kwargs)[source]¶
Bases:
ExpectationModelA trivial model that returns an average DWI volume.
Implement object initialization.
- Parameters:
dataset (
DWI) – Reference to a DWI object.stat (
str, optional) – Whether the summary statistic to apply is"mean"or"median".atol_low (
float, optional) – A lower bound for the b-value corresponding to the diffusion weighted images that will be averaged.atol_low (
float, optional) – An upper bound for the b-value corresponding to the diffusion weighted images that will be averaged.detrend (
bool, optional) – Whether the overall distribution of each diffusion weighted image will be standardized and centered around thesrc.nifreeze.model.base.DEFAULT_CLIP_PERCENTILEpercentile.
- class nifreeze.model.BSplinePETModel(self, dataset: nifreeze.data.pet.base.PET, n_ctrl: int | None = None, order: int = 3, **kwargs)[source]¶
Bases:
BasePETModelA PET imaging realignment model based on B-Spline approximation.
Create the B-Spline interpolating matrix.
- Parameters:
- class nifreeze.model.DKIModel(self, dataset: nifreeze.data.dmri.base.DWI, max_b: float | int | None = None, **kwargs)[source]¶
Bases:
BaseDWIModelA wrapper of
dipy.reconst.dki.DiffusionKurtosisModel.Initialization.
- Parameters:
dataset (
DWI) – Reference to a DWI object.
- class nifreeze.model.DTIModel(self, dataset: nifreeze.data.dmri.base.DWI, max_b: float | int | None = None, **kwargs)[source]¶
Bases:
BaseDWIModelA wrapper of
dipy.reconst.dti.TensorModel.Initialization.
- Parameters:
dataset (
DWI) – Reference to a DWI object.
- class nifreeze.model.ExpectationModel(self, dataset, stat='median', **kwargs)[source]¶
Bases:
BaseModelA trivial model that returns an expectation map (for example, average).
Initialize a new model.
- class nifreeze.model.GPModel(self, dataset: nifreeze.data.dmri.base.DWI, max_b: float | int | None = None, **kwargs)[source]¶
Bases:
BaseDWIModelA wrapper of
GaussianProcessModel.Initialization.
- Parameters:
dataset (
DWI) – Reference to a DWI object.
- class nifreeze.model.ModelFactory(self, /, *args, **kwargs)[source]¶
Bases:
objectA factory for instantiating data models.
- class nifreeze.model.TrivialModel(self, dataset, predicted=None, **kwargs)[source]¶
Bases:
BaseModelA trivial model that returns a given map always.
Implement object initialization.