Warning: This document is for an old version of niworkflows.

Source code for niworkflows.anat.skullstrip

# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
#
# Copyright 2021 The NiPreps Developers <nipreps@gmail.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We support and encourage derived works from this project, please read
# about our expectations at
#
#     https://www.nipreps.org/community/licensing/
#
"""Brain extraction workflows."""
from nipype.interfaces import afni, utility as niu
from nipype.pipeline import engine as pe
from ..interfaces.nibabel import Binarize
from ..interfaces.fixes import FixN4BiasFieldCorrection as N4BiasFieldCorrection


[docs]def afni_wf(name="AFNISkullStripWorkflow", unifize=False, n4_nthreads=1): """ Create a skull-stripping workflow based on AFNI's tools. Originally derived from the `codebase of the QAP <https://github.com/preprocessed-connectomes-project/quality-assessment-protocol/blob/master/qap/anatomical_preproc.py#L105>`_. Now, this workflow includes :abbr:`INU (intensity non-uniformity)` correction using the N4 algorithm and (optionally) intensity harmonization using ANFI's ``3dUnifize``. Workflow Graph .. workflow:: :graph2use: orig :simple_form: yes from niworkflows.anat.skullstrip import afni_wf wf = afni_wf() Parameters ---------- n4_nthreads : int number of cpus N4 bias field correction can utilize. unifize : bool whether AFNI's ``3dUnifize`` should be applied (default: ``False``). name : str name for the workflow hierarchy of Nipype Inputs ------ in_file : str input T1w image. Outputs ------- bias_corrected : str path to the bias corrected input MRI. out_file : str path to the skull-stripped image. out_mask : str path to the generated brain mask. bias_image : str path to the B1 inhomogeneity field. """ workflow = pe.Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=["in_file"]), name="inputnode") outputnode = pe.Node( niu.IdentityInterface( fields=["bias_corrected", "out_file", "out_mask", "bias_image"] ), name="outputnode", ) inu_n4 = pe.Node( N4BiasFieldCorrection( dimension=3, save_bias=True, num_threads=n4_nthreads, rescale_intensities=True, copy_header=True, ), n_procs=n4_nthreads, name="inu_n4", ) sstrip = pe.Node(afni.SkullStrip(outputtype="NIFTI_GZ"), name="skullstrip") sstrip_orig_vol = pe.Node( afni.Calc(expr="a*step(b)", outputtype="NIFTI_GZ"), name="sstrip_orig_vol" ) binarize = pe.Node(Binarize(thresh_low=0.0), name="binarize") if unifize: # Add two unifize steps, pre- and post- skullstripping. inu_uni_0 = pe.Node( afni.Unifize(outputtype="NIFTI_GZ"), name="unifize_pre_skullstrip" ) inu_uni_1 = pe.Node( afni.Unifize(gm=True, outputtype="NIFTI_GZ"), name="unifize_post_skullstrip" ) # fmt: off workflow.connect([ (inu_n4, inu_uni_0, [("output_image", "in_file")]), (inu_uni_0, sstrip, [("out_file", "in_file")]), (inu_uni_0, sstrip_orig_vol, [("out_file", "in_file_a")]), (sstrip_orig_vol, inu_uni_1, [("out_file", "in_file")]), (inu_uni_1, outputnode, [("out_file", "out_file")]), (inu_uni_0, outputnode, [("out_file", "bias_corrected")]), ]) # fmt: on else: # fmt: off workflow.connect([ (inputnode, sstrip_orig_vol, [("in_file", "in_file_a")]), (inu_n4, sstrip, [("output_image", "in_file")]), (sstrip_orig_vol, outputnode, [("out_file", "out_file")]), (inu_n4, outputnode, [("output_image", "bias_corrected")]), ]) # fmt: on # Remaining connections # fmt: off workflow.connect([ (sstrip, sstrip_orig_vol, [("out_file", "in_file_b")]), (inputnode, inu_n4, [("in_file", "input_image")]), (sstrip_orig_vol, binarize, [("out_file", "in_file")]), (binarize, outputnode, [("out_mask", "out_mask")]), (inu_n4, outputnode, [("bias_image", "bias_image")]), ]) # fmt: on return workflow