Warning: This document is for an old version of niworkflows.

Source code for niworkflows.interfaces.nilearn

# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
#
# Copyright 2021 The NiPreps Developers <nipreps@gmail.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We support and encourage derived works from this project, please read
# about our expectations at
#
#     https://www.nipreps.org/community/licensing/
#
"""Utilities based on nilearn."""
import os
import nibabel as nb
import numpy as np
from skimage import morphology as sim
from scipy.ndimage.morphology import binary_fill_holes, binary_dilation

from nilearn import __version__ as NILEARN_VERSION
from nilearn.masking import compute_epi_mask
from nilearn.image import concat_imgs

from nipype import logging
from nipype.utils.filemanip import fname_presuffix
from nipype.interfaces.base import (
    traits,
    isdefined,
    TraitedSpec,
    BaseInterfaceInputSpec,
    File,
    InputMultiPath,
    SimpleInterface,
)
from nipype.interfaces.mixins import reporting
from .reportlets import base as nrb


LOGGER = logging.getLogger("nipype.interface")
__all__ = ["NILEARN_VERSION", "MaskEPI", "Merge", "ComputeEPIMask"]


class _MaskEPIInputSpec(BaseInterfaceInputSpec):
    in_files = InputMultiPath(
        File(exists=True), mandatory=True, desc="input EPI or list of files"
    )
    lower_cutoff = traits.Float(0.2, usedefault=True)
    upper_cutoff = traits.Float(0.85, usedefault=True)
    connected = traits.Bool(True, usedefault=True)
    enhance_t2 = traits.Bool(
        False, usedefault=True, desc="enhance T2 contrast on image"
    )
    opening = traits.Int(2, usedefault=True)
    closing = traits.Bool(True, usedefault=True)
    fill_holes = traits.Bool(True, usedefault=True)
    exclude_zeros = traits.Bool(False, usedefault=True)
    ensure_finite = traits.Bool(True, usedefault=True)
    target_affine = traits.Either(
        None, traits.File(exists=True), default=None, usedefault=True
    )
    target_shape = traits.Either(
        None, traits.File(exists=True), default=None, usedefault=True
    )
    no_sanitize = traits.Bool(False, usedefault=True)


class _MaskEPIOutputSpec(TraitedSpec):
    out_mask = File(exists=True, desc="output mask")


[docs]class MaskEPI(SimpleInterface): """Run Nilearn's compute_epi_mask.""" input_spec = _MaskEPIInputSpec output_spec = _MaskEPIOutputSpec def _run_interface(self, runtime): in_files = self.inputs.in_files if self.inputs.enhance_t2: in_files = [_enhance_t2_contrast(f, newpath=runtime.cwd) for f in in_files] masknii = compute_epi_mask( in_files, lower_cutoff=self.inputs.lower_cutoff, upper_cutoff=self.inputs.upper_cutoff, connected=self.inputs.connected, opening=self.inputs.opening, exclude_zeros=self.inputs.exclude_zeros, ensure_finite=self.inputs.ensure_finite, target_affine=self.inputs.target_affine, target_shape=self.inputs.target_shape, ) if self.inputs.closing: closed = sim.binary_closing( np.asanyarray(masknii.dataobj).astype(np.uint8), sim.ball(1) ).astype(np.uint8) masknii = masknii.__class__(closed, masknii.affine, masknii.header) if self.inputs.fill_holes: filled = binary_fill_holes( np.asanyarray(masknii.dataobj).astype(np.uint8), sim.ball(6) ).astype(np.uint8) masknii = masknii.__class__(filled, masknii.affine, masknii.header) if self.inputs.no_sanitize: in_file = self.inputs.in_files if isinstance(in_file, list): in_file = in_file[0] nii = nb.load(in_file) qform, code = nii.get_qform(coded=True) masknii.set_qform(qform, int(code)) sform, code = nii.get_sform(coded=True) masknii.set_sform(sform, int(code)) self._results["out_mask"] = fname_presuffix( self.inputs.in_files[0], suffix="_mask", newpath=runtime.cwd ) masknii.to_filename(self._results["out_mask"]) return runtime
class _MergeInputSpec(BaseInterfaceInputSpec): in_files = InputMultiPath( File(exists=True), mandatory=True, desc="input list of files to merge" ) dtype = traits.Enum( "f4", "f8", "u1", "u2", "u4", "i2", "i4", usedefault=True, desc="numpy dtype of output image", ) header_source = File( exists=True, desc="a Nifti file from which the header should be copied" ) compress = traits.Bool( True, usedefault=True, desc="Use gzip compression on .nii output" ) class _MergeOutputSpec(TraitedSpec): out_file = File(exists=True, desc="output merged file")
[docs]class Merge(SimpleInterface): """Run Nilearn's concat_imgs.""" input_spec = _MergeInputSpec output_spec = _MergeOutputSpec def _run_interface(self, runtime): ext = ".nii.gz" if self.inputs.compress else ".nii" self._results["out_file"] = fname_presuffix( self.inputs.in_files[0], suffix="_merged" + ext, newpath=runtime.cwd, use_ext=False, ) new_nii = concat_imgs(self.inputs.in_files, dtype=self.inputs.dtype) if isdefined(self.inputs.header_source): src_hdr = nb.load(self.inputs.header_source).header new_nii.header.set_xyzt_units(t=src_hdr.get_xyzt_units()[-1]) new_nii.header.set_zooms( list(new_nii.header.get_zooms()[:3]) + [src_hdr.get_zooms()[3]] ) new_nii.to_filename(self._results["out_file"]) return runtime
class _ComputeEPIMaskInputSpec(nrb._SVGReportCapableInputSpec, BaseInterfaceInputSpec): in_file = File(exists=True, desc="3D or 4D EPI file") dilation = traits.Int(desc="binary dilation on the nilearn output") class _ComputeEPIMaskOutputSpec(reporting.ReportCapableOutputSpec): mask_file = File(exists=True, desc="Binary brain mask")
[docs]class ComputeEPIMask(nrb.SegmentationRC): input_spec = _ComputeEPIMaskInputSpec output_spec = _ComputeEPIMaskOutputSpec def _run_interface(self, runtime): orig_file_nii = nb.load(self.inputs.in_file) in_file_data = orig_file_nii.get_fdata() # pad the data to avoid the mask estimation running into edge effects in_file_data_padded = np.pad( in_file_data, (1, 1), "constant", constant_values=(0, 0) ) padded_nii = nb.Nifti1Image( in_file_data_padded, orig_file_nii.affine, orig_file_nii.header ) mask_nii = compute_epi_mask(padded_nii, exclude_zeros=True) mask_data = np.asanyarray(mask_nii.dataobj).astype(np.uint8) if isdefined(self.inputs.dilation): mask_data = binary_dilation(mask_data).astype(np.uint8) # reverse image padding mask_data = mask_data[1:-1, 1:-1, 1:-1] # exclude zero and NaN voxels mask_data[in_file_data == 0] = 0 mask_data[np.isnan(in_file_data)] = 0 better_mask = nb.Nifti1Image( mask_data, orig_file_nii.affine, orig_file_nii.header ) better_mask.set_data_dtype(np.uint8) better_mask.to_filename("mask_file.nii.gz") self._mask_file = os.path.join(runtime.cwd, "mask_file.nii.gz") runtime.returncode = 0 return super(ComputeEPIMask, self)._run_interface(runtime) def _list_outputs(self): outputs = super(ComputeEPIMask, self)._list_outputs() outputs["mask_file"] = self._mask_file return outputs def _post_run_hook(self, runtime): """Prepare report generation post-hook.""" self._anat_file = self.inputs.in_file self._mask_file = self.aggregate_outputs(runtime=runtime).mask_file self._seg_files = [self._mask_file] self._masked = True LOGGER.info( 'Generating report for nilearn.compute_epi_mask. file "%s", and mask file "%s"', self._anat_file, self._mask_file, ) return super(ComputeEPIMask, self)._post_run_hook(runtime)
def _enhance_t2_contrast(in_file, newpath=None, offset=0.5): """ Enhance the T2* contrast of an EPI dataset. Performs a logarithmic transformation of intensity that effectively splits brain and background and makes the overall distribution more Gaussian. """ out_file = fname_presuffix(in_file, suffix="_t1enh", newpath=newpath) nii = nb.load(in_file) data = nii.get_fdata() maxd = data.max() newdata = np.log(offset + data / maxd) newdata -= newdata.min() newdata *= maxd / newdata.max() nii = nii.__class__(newdata, nii.affine, nii.header) nii.to_filename(out_file) return out_file