niworkflows.viz.utils module¶
Helper tools for visualization purposes.
- niworkflows.viz.utils.compose_view(bg_svgs, fg_svgs, ref=0, out_file='report.svg')[source]¶
Compose the input svgs into one standalone svg with CSS flickering animation.
- niworkflows.viz.utils.cuts_from_bbox(mask_nii, cuts=3)[source]¶
Find equi-spaced cuts for presenting images.
- niworkflows.viz.utils.extract_svg(display_object, dpi=300, compress='auto')[source]¶
Remove the preamble of the svg files generated with nilearn.
- niworkflows.viz.utils.plot_melodic_components(melodic_dir, in_file, tr=None, out_file='melodic_reportlet.svg', compress='auto', report_mask=None, noise_components_file=None)[source]¶
Plots the spatiotemporal components extracted by FSL MELODIC from functional MRI data.
- Parameters:
melodic_dir (str) – Path pointing to the outputs of MELODIC
in_file (str) – Path pointing to the reference fMRI dataset. This file will be used to extract the TR value, if the
tr
argument is not set. This file will be used to calculate a mask ifreport_mask
is not provided.tr (float) – Repetition time in seconds
out_file (str) – Path where the resulting SVG file will be stored
compress (
'auto'
or bool) – Whether SVG should be compressed. If'auto'
, compression will be executed if dependencies are installed (SVGO)report_mask (str) – Path to a brain mask corresponding to
in_file
noise_components_file (str) – A CSV file listing the indexes of components classified as noise by some manual or automated (e.g. ICA-AROMA) procedure. If a
noise_components_file
is provided, then components will be plotted with red/green colors (correspondingly to whether they are in the file -noise components, red-, or not -signal, green-). When all or none of the components are in the file, a warning is printed at the top.
- niworkflows.viz.utils.plot_registration(anat_nii, div_id, plot_params=None, order=('z', 'x', 'y'), cuts=None, estimate_brightness=False, label=None, contour=None, compress='auto', dismiss_affine=False)[source]¶
Plots the foreground and background views Default order is: axial, coronal, sagittal
- niworkflows.viz.utils.plot_segs(image_nii, seg_niis, out_file, bbox_nii=None, masked=False, colors=None, compress='auto', **plot_params)[source]¶
Generate a static mosaic with ROIs represented by their delimiting contour.
Plot segmentation as contours over the image (e.g. anatomical). seg_niis should be a list of files. mask_nii helps determine the cut coordinates. plot_params will be passed on to nilearn plot_* functions. If seg_niis is a list of size one, it behaves as if it was plotting the mask.
- niworkflows.viz.utils.robust_set_limits(data, plot_params, percentiles=(15, 99.8))[source]¶
Set (vmax, vmin) based on percentiles of the data.
- niworkflows.viz.utils.svg2str(display_object, dpi=300)[source]¶
Serialize a nilearn display object to string.