sdcflows.interfaces.utils module¶
Utilities.
- class sdcflows.interfaces.utils.ConvertWarp(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Convert a displacements field from
3dQwarp
to ANTS-compatible.- Mandatory Inputs:
in_file (a pathlike object or string representing an existing file) – Output of 3dQwarp.
- Outputs:
out_file (a pathlike object or string representing an existing file) – The warp converted into ANTs.
- class sdcflows.interfaces.utils.DenoiseImage(**inputs)[source]¶
Bases:
DenoiseImage
,CopyHeaderInterface
Wrapped executable:
DenoiseImage
.Add copy_header capability to DenoiseImage from nipype.
- Mandatory Inputs:
input_image (a pathlike object or string representing an existing file) – A scalar image is expected as input for noise correction. Maps to a command-line argument:
-i %s
.save_noise (a boolean) – True if the estimated noise should be saved to file. Mutually exclusive with inputs:
noise_image
. (Nipype default value:False
)
- Optional Inputs:
args (a string) – Additional parameters to the command. Maps to a command-line argument:
%s
.copy_header (a boolean) – Copy headers of the original image into the output (corrected) file. (Nipype default value:
True
)dimension (2 or 3 or 4) – This option forces the image to be treated as a specified-dimensional image. If not specified, the program tries to infer the dimensionality from the input image. Maps to a command-line argument:
-d %d
.environ (a dictionary with keys which are a bytes or None or a value of class ‘str’ and with values which are a bytes or None or a value of class ‘str’) – Environment variables. (Nipype default value:
{}
)noise_image (a pathlike object or string representing a file) – Filename for the estimated noise.
noise_model (‘Gaussian’ or ‘Rician’) – Employ a Rician or Gaussian noise model. Maps to a command-line argument:
-n %s
. (Nipype default value:Gaussian
)num_threads (an integer) – Number of ITK threads to use. (Nipype default value:
1
)output_image (a pathlike object or string representing a file) – The output consists of the noise corrected version of the input image. Maps to a command-line argument:
-o %s
.shrink_factor (an integer) – Running noise correction on large images can be time consuming. To lessen computation time, the input image can be resampled. The shrink factor, specified as a single integer, describes this resampling. Shrink factor = 1 is the default. Maps to a command-line argument:
-s %s
. (Nipype default value:1
)verbose (a boolean) – Verbose output. Maps to a command-line argument:
-v
.
- Outputs:
noise_image (a pathlike object or string representing a file)
output_image (a pathlike object or string representing an existing file)
- class sdcflows.interfaces.utils.Deoblique(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Make a dataset plumb.
- Mandatory Inputs:
in_file (a pathlike object or string representing an existing file) – The input dataset potentially oblique.
- Optional Inputs:
in_mask (a pathlike object or string representing an existing file) – A binary mask corresponding to the input dataset.
- Outputs:
out_file (a pathlike object or string representing an existing file) – The input dataset, after correcting obliquity.
out_mask (a pathlike object or string representing an existing file) – The input mask, after correcting obliquity.
- class sdcflows.interfaces.utils.Flatten(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Flatten a list of 3D and 4D files (and metadata).
- Mandatory Inputs:
in_data (a list of items which are a pathlike object or string representing an existing file) – List of input data.
in_meta (a list of items which are a dictionary with keys which are a value of class ‘str’ and with values which are any value) – List of metadata.
- Optional Inputs:
max_trs (an integer) – Only pick first TRs. (Nipype default value:
50
)- Outputs:
out_data (a list of items which are a pathlike object or string representing an existing file)
out_list (a list of items which are a tuple of the form: (a pathlike object or string representing an existing file, a dictionary with keys which are a value of class ‘str’ and with values which are any value)) – List of output files.
out_meta (a list of items which are a dictionary with keys which are a value of class ‘str’ and with values which are any value)
- class sdcflows.interfaces.utils.PadSlices(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Check an image for uneven slices, and add an empty slice if necessary
This intends to avoid TOPUP’s segfault without changing the standard configuration
- Mandatory Inputs:
in_file (a pathlike object or string representing an existing file) – 3D or 4D NIfTI image.
- Optional Inputs:
axis (an integer) – The axis through which slices are stacked in the input data. (Nipype default value:
2
)- Outputs:
out_file (a pathlike object or string representing an existing file) – The output file with even number of slices.
padded (a boolean) – Indicator if the input image was padded.
- class sdcflows.interfaces.utils.PositiveDirectionCosines(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Reorient axes polarity to have all positive direction cosines.
- Mandatory Inputs:
in_file (a pathlike object or string representing an existing file) – Input image.
- Outputs:
in_orientation (a string)
out_file (a pathlike object or string representing a file)
- class sdcflows.interfaces.utils.Reoblique(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Make a dataset plumb.
- Mandatory Inputs:
in_epi (a pathlike object or string representing an existing file) – The original, potentially oblique EPI image.
in_field (a pathlike object or string representing an existing file) – The plumb field map, extracted from the displacements field estimated by SyN.
in_plumb (a pathlike object or string representing an existing file) – The plumb EPI image.
- Optional Inputs:
in_mask (a pathlike object or string representing an existing file) – A binary mask corresponding to the input dataset.
- Outputs:
out_epi (a pathlike object or string representing an existing file) – The reoblique’d EPI image.
out_field (a pathlike object or string representing an existing file) – The reoblique’d EPI image.
out_mask (a pathlike object or string representing an existing file) – The input mask, after correcting obliquity.
- class sdcflows.interfaces.utils.ReorientImageAndMetadata(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
- Mandatory Inputs:
in_file (a pathlike object or string representing an existing file) – Input 3- or 4D image.
- Optional Inputs:
pe_dir (a list of items which are ‘i’ or ‘i-’ or ‘j’ or ‘j-’ or ‘k’ or ‘k-’ or ‘x’ or ‘x-’ or ‘y’ or ‘y-’ or ‘z’ or ‘z-’)
target_orientation (a string) – Axis codes of coordinate system to reorient to.
- Outputs:
out_file (a pathlike object or string representing a file) – Reoriented image.
pe_dir (a list of items which are ‘i’ or ‘i-’ or ‘j’ or ‘j-’ or ‘k’ or ‘k-’ or ‘x’ or ‘x-’ or ‘y’ or ‘y-’ or ‘z’ or ‘z-’)
- class sdcflows.interfaces.utils.UniformGrid(from_file=None, resource_monitor=None, **inputs)[source]¶
Bases:
SimpleInterface
Ensure all images in input have the same spatial parameters.
- Mandatory Inputs:
in_data (a list of items which are a pathlike object or string representing an existing file) – List of input data.
- Optional Inputs:
reference (an integer) – Reference index. (Nipype default value:
0
)- Outputs:
out_data (a list of items which are a pathlike object or string representing an existing file)
reference (a pathlike object or string representing an existing file)