Source code for nifreeze.cli.run

# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
#
# Copyright The NiPreps Developers <nipreps@gmail.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We support and encourage derived works from this project, please read
# about our expectations at
#
#     https://www.nipreps.org/community/licensing/
#
"""NiFreeze runner."""

from pathlib import Path

from nifreeze.cli.parser import parse_args
from nifreeze.data import BaseDataset, load
from nifreeze.estimator import Estimator


[docs] def main(argv=None) -> None: """ Entry point. Returns ------- None """ args, extra_kwargs, estimator_kwargs, model_kwargs = parse_args(argv) # Open the data with the given file path dataset: BaseDataset = load( args.input_file, brainmask_file=args.brainmask if args.brainmask else None, **extra_kwargs, ) prev_model: Estimator | None = None for _model in args.models: single_fit = estimator_kwargs[_model]["single_fit"] estimator: Estimator = Estimator( _model, prev=prev_model, single_fit=single_fit, model_kwargs=model_kwargs, ) prev_model = estimator _ = estimator.run( dataset, align_kwargs=args.align_config, omp_nthreads=args.nthreads, n_jobs=args.n_jobs, seed=args.seed, ) # Set the output filename to be the same as the input filename output_filename = Path(Path(args.input_file).name).stem + ".nii.gz" output_path: Path = Path(args.output_dir) / output_filename # Save the DWI dataset to the output path if args.write_hdf5: output_h5_filename = Path(Path(args.input_file).name).stem + ".h5" output_h5_path: Path = Path(args.output_dir) / output_h5_filename dataset.to_filename(output_h5_path) dataset.to_nifti(output_path)
if __name__ == "__main__": main()