Source code for niworkflows.interfaces.fixes

# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
#
# Copyright 2021 The NiPreps Developers <nipreps@gmail.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# We support and encourage derived works from this project, please read
# about our expectations at
#
#     https://www.nipreps.org/community/licensing/
#
import os

import nibabel as nb
from nipype.interfaces.ants.registration import (
    Registration,
)
from nipype.interfaces.ants.registration import (
    RegistrationInputSpec as _RegistrationInputSpec,
)
from nipype.interfaces.ants.resampling import ApplyTransforms, ApplyTransformsInputSpec
from nipype.interfaces.ants.segmentation import (
    N4BiasFieldCorrection as VanillaN4,
)
from nipype.interfaces.ants.segmentation import (
    N4BiasFieldCorrectionOutputSpec as VanillaN4OutputSpec,
)
from nipype.interfaces.base import File, InputMultiObject, traits
from nipype.utils.filemanip import fname_presuffix

from .. import __version__
from ..utils.images import _copyxform


class _FixTraitApplyTransformsInputSpec(ApplyTransformsInputSpec):
    transforms = InputMultiObject(
        traits.Either(File(exists=True), 'identity'),
        argstr='%s',
        mandatory=True,
        desc='transform files: will be applied in reverse order. For '
        'example, the last specified transform will be applied first.',
    )


[docs] class FixHeaderApplyTransforms(ApplyTransforms): """ A replacement for nipype.interfaces.ants.resampling.ApplyTransforms that fixes the resampled image header to match the xform of the reference image """ input_spec = _FixTraitApplyTransformsInputSpec def _run_interface(self, runtime, correct_return_codes=(0,)): # Run normally runtime = super()._run_interface(runtime, correct_return_codes) _copyxform( self.inputs.reference_image, os.path.abspath(self._gen_filename('output_image')), message=f'{self.__class__.__name__} (niworkflows v{__version__})', ) return runtime
class _FixHeaderRegistrationInputSpec(_RegistrationInputSpec): restrict_deformation = traits.List( traits.List(traits.Range(low=0.0, high=1.0)), desc=( 'This option allows the user to restrict the optimization of ' 'the displacement field, translation, rigid or affine transform ' 'on a per-component basis. For example, if one wants to limit ' 'the deformation or rotation of 3-D volume to the first two ' 'dimensions, this is possible by specifying a weight vector of ' "'1x1x0' for a deformation field or '1x1x0x1x1x0' for a rigid " 'transformation. Low-dimensional restriction only works if ' 'there are no preceding transformations.' ), )
[docs] class FixHeaderRegistration(Registration): """ A replacement for nipype.interfaces.ants.registration.Registration that fixes the resampled image header to match the xform of the reference image """ input_spec = _FixHeaderRegistrationInputSpec def _run_interface(self, runtime, correct_return_codes=(0,)): # Run normally runtime = super()._run_interface(runtime, correct_return_codes) # Forward transform out_file = self._get_outputfilenames(inverse=False) if out_file is not None and out_file: _copyxform( self.inputs.fixed_image[0], os.path.abspath(out_file), message=f'{self.__class__.__name__} (niworkflows v{__version__})', ) # Inverse transform out_file = self._get_outputfilenames(inverse=True) if out_file is not None and out_file: _copyxform( self.inputs.moving_image[0], os.path.abspath(out_file), message=f'{self.__class__.__name__} (niworkflows v{__version__})', ) return runtime
class _FixN4BiasFieldCorrectionOutputSpec(VanillaN4OutputSpec): negative_values = traits.Bool( False, usedefault=True, desc='Indicates whether the input was corrected for ' 'nonpositive values by adding a constant offset.', )
[docs] class FixN4BiasFieldCorrection(VanillaN4): """Checks and fixes for nonpositive values in the input to ``N4BiasFieldCorrection``.""" output_spec = _FixN4BiasFieldCorrectionOutputSpec def __init__(self, *args, **kwargs): """Add a private property to keep the path to the right input.""" self._input_image = None self._negative_values = False super().__init__(*args, **kwargs) def _format_arg(self, name, trait_spec, value): if name == 'input_image': return trait_spec.argstr % self._input_image return super()._format_arg(name, trait_spec, value) def _parse_inputs(self, skip=None): self._input_image = self.inputs.input_image # Check intensities input_nii = nb.load(self.inputs.input_image) datamin = input_nii.get_fdata().min() if datamin < 0: self._input_image = fname_presuffix( self.inputs.input_image, suffix='_scaled', newpath=os.getcwd() ) data = input_nii.get_fdata() - datamin newnii = input_nii.__class__(data, input_nii.affine, input_nii.header) newnii.to_filename(self._input_image) self._negative_values = True return super()._parse_inputs(skip=skip) def _list_outputs(self): outputs = super()._list_outputs() outputs['negative_values'] = self._negative_values return outputs