eddymotion.model package¶
Data models.
- class eddymotion.model.AverageDWModel(self, **kwargs)[source]¶
Bases:
BaseDWIModel
A trivial model that returns an average map.
Implement object initialization.
- Parameters:
th_low (
numbers.Number
) – A lower bound for the b-value corresponding to the diffusion weighted images that will be averaged.th_high (
numbers.Number
) – An upper bound for the b-value corresponding to the diffusion weighted images that will be averaged.bias (
bool
) – Whether the overall distribution of each diffusion weighted image will be standardized and centered around thesrc.eddymotion.model.base.DEFAULT_CLIP_PERCENTILE
percentile.stat (
str
) – Whether the summary statistic to apply is"mean"
or"median"
.
- class eddymotion.model.AverageModel(self, **kwargs)[source]¶
Bases:
BaseModel
A trivial model that returns an average map.
Initialize a new model.
- property is_fitted¶
- class eddymotion.model.DKIModel(self, gtab, S0=None, b_max=None, **kwargs)[source]¶
Bases:
BaseDWIModel
A wrapper of
dipy.reconst.dki.DiffusionKurtosisModel
.Initialization.
- Parameters:
gtab (
numpy.ndarray
) – An \(N imes 4\) table, where rows (N) are diffusion gradients and columns are b-vector components and corresponding b-value, respectively.S0 (
numpy.ndarray
) – \(S_{0}\) signal.b_max (
int
) – Maximum value to cap b-values.
- class eddymotion.model.DTIModel(self, gtab, S0=None, b_max=None, **kwargs)[source]¶
Bases:
BaseDWIModel
A wrapper of
dipy.reconst.dti.TensorModel
.Initialization.
- Parameters:
gtab (
numpy.ndarray
) – An \(N imes 4\) table, where rows (N) are diffusion gradients and columns are b-vector components and corresponding b-value, respectively.S0 (
numpy.ndarray
) – \(S_{0}\) signal.b_max (
int
) – Maximum value to cap b-values.
- class eddymotion.model.GPModel(self, gtab, S0=None, b_max=None, **kwargs)[source]¶
Bases:
BaseDWIModel
A wrapper of
GaussianProcessModel
.Initialization.
- Parameters:
gtab (
numpy.ndarray
) – An \(N imes 4\) table, where rows (N) are diffusion gradients and columns are b-vector components and corresponding b-value, respectively.S0 (
numpy.ndarray
) – \(S_{0}\) signal.b_max (
int
) – Maximum value to cap b-values.
- class eddymotion.model.ModelFactory(self, /, *args, **kwargs)[source]¶
Bases:
object
A factory for instantiating diffusion models.
- class eddymotion.model.PETModel(self, timepoints=None, xlim=None, n_ctrl=None, order=3, **kwargs)[source]¶
Bases:
BaseModel
A PET imaging realignment model based on B-Spline approximation.
Create the B-Spline interpolating matrix.
Parameters:¶
- timepoints
list
The timing (in sec) of each PET volume. E.g.,
[15., 45., 75., 105., 135., 165., 210., 270., 330., 420., 540., 750., 1050., 1350., 1650., 1950., 2250., 2550.]
- n_ctrl
int
Number of B-Spline control points. If None, then one control point every six timepoints will be used. The less control points, the smoother is the model.
- property is_fitted¶
- timepoints
- class eddymotion.model.TrivialModel(self, predicted=None, **kwargs)[source]¶
Bases:
BaseModel
A trivial model that returns a given map always.
Implement object initialization.
- property is_fitted¶