eddymotion.model package

Data models.

class eddymotion.model.AverageDWModel(**kwargs)[source]

Bases: BaseDWIModel

A trivial model that returns an average map.

fit(data, **kwargs)[source]

Calculate the average.

predict(*_, **kwargs)[source]

Return the average map.

class eddymotion.model.AverageModel(**kwargs)[source]

Bases: BaseModel

A trivial model that returns an average map.

fit(data, **kwargs)[source]

Calculate the average.

property is_fitted
predict(*_, **kwargs)[source]

Return the average map.

class eddymotion.model.DKIModel(gtab, S0=None, b_max=None, **kwargs)[source]

Bases: BaseDWIModel

A wrapper of dipy.reconst.dki.DiffusionKurtosisModel.

class eddymotion.model.DTIModel(gtab, S0=None, b_max=None, **kwargs)[source]

Bases: BaseDWIModel

A wrapper of dipy.reconst.dti.TensorModel.

class eddymotion.model.GPModel(gtab, S0=None, b_max=None, **kwargs)[source]

Bases: BaseDWIModel

A wrapper of GaussianProcessModel.

class eddymotion.model.ModelFactory[source]

Bases: object

A factory for instantiating diffusion models.

static init(model='DTI', **kwargs)[source]

Instantiate a diffusion model.

Parameters:

model (str) – Diffusion model. Options: "DTI", "DKI", "S0", "AverageDW"

Returns:

model – A model object compliant with DIPY’s interface.

Return type:

ReconstModel

class eddymotion.model.PETModel(timepoints=None, xlim=None, n_ctrl=None, order=3, **kwargs)[source]

Bases: BaseModel

A PET imaging realignment model based on B-Spline approximation.

fit(data, **kwargs)[source]

Fit the model.

property is_fitted
predict(index=None, **kwargs)[source]

Return the corrected volume using B-spline interpolation.

class eddymotion.model.TrivialModel(predicted=None, **kwargs)[source]

Bases: BaseModel

A trivial model that returns a given map always.

fit(data, **kwargs)[source]

Do nothing.

property is_fitted
predict(*_, **kwargs)[source]

Return the b=0 map.

Submodules